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Abstract
There is need for data visualization tools which are both scalable
and productive We show how previous work on parallel schedule
synthesis for attribute grammars can be extended to this domain.
Our results retain the flexibility of common tools in this area, while
handling up to two magnitudes more data.

1. Motivation
Data is growing at an increasing pace. In 2003, it took 10 years
to sequence a full human genome; today, the same can be done in
a week, generating 700 MB of compressed data. Interactive data
visualization is one technique for understanding and working with
data.

Bostock and Heer [2] recognize the need for visualization tools
which combine accessibility, expressiveness, and efficiency. Large
datasets put an especially large emphasis on efficiency, yet tradi-
tionally tools have traded performance for accessibility and expres-
siveness

Browser-based interactive visualization tools have become pop-
ular in part because because of the accessibility and expressiveness
they provide. Web browsers provide a high-level, widely known de-
velopment environment, simple methods for user interaction, and a
common platform for distribution. However, these tools often lack
the performance required for big data.

In our tests, D3.js, a popular browser-based visualization tool,
was able to animate just 1,000 points of data in a sunburst visual-
ization while maintaining a speed of 30 frames-per-second. When
the size of the data was increased to 10,000 points, animation speed
was just 10 frames-per-second.

Our previous work has shown how to synthesize a schedule of
parallel tree traversals from an attribute grammar [4]. As part of
our previous position paper on this subject, we outlined how we
might apply our work on parallel schedule synthesis to data visu-
alization [3]. Here, we show how our visualization tool, Supercon-
ductor, implements those ideas.
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Figure 1: An interactive treemap visualization using Superconduc-
tor, displaying 94,000 points of data collected from a recent elec-
tion.

2. Contributions
I contributed three major points to this project:

• To use the FTL synthesizer to find a parallel tree traversal
schedule, I converted a collection of common visualizations to
attribute grammar form.

• To enable scalable visualizations in the web browser, I wrote
a code generator which takes a parallel traversal schedule, and
generates GPU-based WebCL code targeting the browser.

• To enable efficient execution and an accessible interface, I cre-
ated a runtime library for running these visualization engines
within the browser. This includes support for data parsing, GPU
device management, dynamic GPU memory allocation, and
rendering support.

2.1 Synthesis
The FTL synthesizer uses attribute grammars as a declarative spec-
ification of layouts. From this, it is able to synthesize a schedule
of parallel tree traversals which can be used to implement the pro-
gram. These specifications only declare the behavior of the pro-
gram, not the implementation. In this way, the programmer can fo-
cus on the behavior of the visualization, while the synthesizer can
discover parallelization in the visualization.

For the Superconductor project, I worked on identifying a col-
lection of common visualizations and creating attribute grammar
specification for them. Figure 2 shows part of the attribute gram-
mar used to specify the treemap visualization in figure 1. Super-
conductor is able to animate this visualization, containing 94,000
data points, at approximately 30 frames-per-second. I also created
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1 c l a s s C o n t a i n e r {
2 c h i l d r e n c : [ Box ] //layout tree schema
3 i n p u t wid th = 300 ; //default overridable by selectors
4 v a r h e i g h t = wid th ;
5 wid th [ i ] = wid th ∗ c [ i ] . magn i tude / t o t a l M a g n i t u d e
6 v a r t o t a l M a g n i t u d e = t o t a l M a g n i t u d e + c [ i ] . magn i tude
7 . . .
8 }
9 c l a s s Box {

10 i n p u t magn i tude = 0
11 v a r x , y , width , h e i g h t ;
12 v a r r e n d e r = drawSquare ( x , y , width , h e i g h t )
13 . . .
14 }

Figure 2: Excerpt of attribute grammar representation of a treemap
used to generate the visualization in figure 1.

a sunburst visualization with Superconductor, which was able to
animate 1,000,000 data points at 30 frames-per-second, in compar-
ison with D3.js animating 1,000 nodes at the same speed.

In accordance with the capabilities of the FTL synthesizer, we
believe any tree-structured visualization, with computations linear
in the number of children of a node, can be expressed in this way.

2.2 Code Generation
From a schedule of parallel tree traversals, we are able to directly
code generate an implementation of the specified visualization.
Superconductor targets the browser as its visualization platform,
and makes use the GPU for parallelization. WebCL 1, an emerging
web standard, allows our browser-based code access to GPU.

For Superconductor, I developed a GPU-based code genera-
tor. This work involved first creating a collection of parallel tree
traversal patterns for the GPU. Efficient GPU data structures, which
structure split tree data into flat arrays in a method similar to that
in Blelloch and Greiner [1], were also created. The code generator
uses these patterns and data structures to implement a parallel vi-
sualization engine. The schedule defines which pattern should be
run, and in what order, as well as what computation should occur
at each step.

The product of this code generation is a layout engine mod-
ule implementing a particular visualization. A designer is able to
choose how he or she wants to visualize their data, and load the
layout engine implementing that visualization at runtime.

2.3 Runtime
The Superconductor visualization framework is used by designers
via the superconductor.js runtime JavaScript this library. This
library handles GPU device management, data parsing and transfer,
and rendering.

One novel aspect I contributed to this library was our method
of rendering. WebCL allows for directly sharing memory with We-
bGL, avoiding potentially slow transfers to-and-from the GPU. Our
rendering API is implemented as a collection of functions which
write WebGL-compatible vertex data into this shared memory, and
WebGL is invoked to perform the actual rendering.

The layout specification is structured in such a way that visual-
ization attributes are competed prior to calling rendering function.
As a consequence, the number of vertices being rendered is un-
known until after the layout engine has been executed on the input
and these functions have been called. To avoid overflowing the al-
located rendering buffer, we introduce an attribute to our attribute
grammar which computes the size of the data to be rendered. The
runtime library then ensures that the vertex buffer is sufficiently

1 http://www.khronos.org/webcl/

large to hold this data and, if not, reallocates the buffer with suffi-
cient size.

3. Conclusion
I have shown my contributions in extending the FTL synthesizer
for accessible, productive and efficient data visualization in order
to support large data sets. My work has included expressing com-
mon visualizations as attribute grammars, creating a WebCL code
generator for the creation of browser-based GPU-accelerated visu-
alizations engines, and the creation of an efficient runtime library
for the execution of these engines.
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